随着工业自动化的不断发展,上位机工控系统作为工业控制领域的重要组成部分,其核心技术及应用领域日益受到关注。
上位机工控系统是实现人机交互、监控与控制工业设备的关键环节,对于提高生产效率、保障工业安全具有重要意义。
本文将详细介绍上位机工控系统的核心技术及其应用领域,并探讨工控上位机一般使用的编程语言。
上位机工控系统是指工业控制系统中的人机交互界面部分,主要负责接收现场传感器信号、执行控制指令、监控设备运行状态以及实现数据管理和处理等功能。
上位机工控系统通常由硬件和软件两部分组成,其中硬件包括计算机、触摸屏、显示器等,软件则包括操作系统、应用软件等。
人机交互技术是上位机工控系统的核心技术之一,包括触摸屏技术、显示技术、输入技术等。
这些技术使得操作人员能够直观地与工业设备进行交互,实现对设备的监控和控制。
通信技术是上位机工控系统中实现数据传输的关键技术。
常见的通信协议包括RS232、RS485、以太网等。
通过这些通信协议,上位机可以与现场的各种设备进行数据交换,实现对现场设备的实时监控和控制。
数据处理技术是上位机工控系统中不可或缺的技术之一。
上位机需要实时采集现场数据,并进行数据处理和分析,以便为操作人员提供准确的设备运行状态信息。
数据处理技术包括数据采集、数据存储、数据分析等。
控制技术是上位机工控系统的核心,包括自动控制技术、逻辑控制技术等。
这些技术使得上位机能够根据现场数据和预设的控制策略,对工业设备进行自动控制,提高生产效率。
制造业是上位机工控系统最主要的应用领域之一。
在制造业中,上位机工控系统被广泛应用于生产线控制、设备监控、物料管理等环节,提高了制造业的自动化水平,降低了生产成本。
能源行业如电力、石油、天然气等也是上位机工控系统的重要应用领域。
通过上位机工控系统,可以实现对能源设备的实时监控和控制,保障能源生产的稳定性和安全性。
交通运输领域也需要上位机工控系统来监控和控制各种交通设备。
例如,在铁路、公路、航空等领域,上位机工控系统被用于监控设备状态、调度交通信号等,提高了交通运输的安全性和效率。
随着环保意识的提高,环保行业对上位机工控系统的需求也在不断增加。
通过上位机工控系统,可以实现对环保设备的实时监控和控制,如污水处理、空气净化等领域。
工控上位机使用的编程语言主要有C/C++、Java、C等。
这些编程语言具有稳定性高、实时性强、易于开发等特点,适合用于开发复杂的工业控制系统。
其中,C/C++语言在底层开发中具有很高的效率,Java和C语言则在上层应用开发中具有较好的易用性。
上位机工控系统在工业控制领域中发挥着重要作用。
其核心技术包括人机交互技术、通信技术、数据处理技术和控制技术等。
应用领域涉及制造业、能源行业、交通运输和环保行业等。
在选择编程语言时,C/C++、Java和C等语言是比较常用的选择。
随着技术的不断发展,上位机工控系统的功能和性能将不断提高,为工业自动化带来更多的便利和效益。
编辑本段简介 数学中解耦是指使含有多个变量的数学方程变成能够用单个变量表示的方程组,即变量不再同时共同直接影响一个方程的结果,从而简化分析计算。 通过适当的控制量的选取,坐标变换等手段将一个多变量系统化为多个独立的单变量系统的数学模型,即解除各个变量之间的耦合。 最常见的有发电机控制,锅炉调节等系统。 软件开发中的耦合偏向于两者或多者的彼此影响,解耦就是要解除这种影响,增强各自的独立存在能力,可以无限降低存在的耦合度,但不能根除,否则就失去了彼此的关联,失去了存在意义。 工程背景 在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对该种设备进行控制。 由于控制回路的增加,往往会在它们之间造成相互影响的耦合作用,也即系统中每一个控制回路的输入信号对所有回路的输出都会有影响,而每一个回路的输出又会受到所有输入的作用。 要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。 由于耦合关系,往往使系统难于控制、性能很差。 主要分类 三种解耦理论分别是:基于Morgan问题的解耦控制,基于特征结构配置的解耦控制和基于H_∞的解耦控制理论。 在过去的几十年中,有两大系列的解耦方法占据了主导地位。 其一是围绕Morgan问题的一系列状态空间方法,这种方法属于全解耦方法。 这种基于精确对消的解耦方法,遇到被控对象的任何一点摄动,都会导致解耦性的破坏,这是上述方法的主要缺陷。 其二是以Rosenbrock为代表的现代频域法,其设计目标是被控对象的对角优势化而非对角化,从而可以在很大程度上避免全解耦方法的缺陷,这是一种近似解耦方法。 编辑本段相关解法 选择适当的控制规律将一个多变量系统化为多个独立的单变量系统的控制问题。 在解耦控制问题中,基本目标是设计一个控制装置,使构成的多变量控制系统的每个输出变量仅由一个输入变量完全控制,且不同的输出由不同的输入控制。 在实现解耦以后,一个多输入多输出控制系统就解除了输入、输出变量间的交叉耦合,从而实现自治控制,即互不影响的控制。 互不影响的控制方式,已经应用在发动机控制、锅炉调节等工业控制系统中。 多变量系统的解耦控制问题,早在30年代末就已提出,但直到1969年才由E.G.吉尔伯特比较深入和系统地加以解决。 完全解耦控制 对于输出和输入变量个数相同的系统,如果引入适当的控制规律,使控制系统的传递函数矩阵为非奇异对角矩阵,就称系统实现了完全解耦。 使多变量系统实现完全解耦的控制器,既可采用状态反馈结合输入变换的形式,也可采用输出反馈结合补偿装置的形式。 给定n维多输入多输出线性定常系统(A,B,C)(见线性系统理论),将输出矩阵C表示为 C戁为C的第i个行向量,i=1,2,…,m,m为输出向量的维数。 再规定一组结构指数di(i=1,2,…,m):当C戁B=0,C戁AB=0…,C戁AB=0时,取di=n-1;否则,di取为使CiAB≠0的最小正整数N,N=0,1,2,…,n-1。 利用结构指数可组成解耦性判别矩阵: 已证明,系统可用状态反馈和输入变换,即通过引入控制规律u=-Kx+Lv,实现完全解耦的充分必要条件是矩阵E为非奇异。 这里,u为输入向量,x为状态向量,v为参考输入向量,K为状态反馈矩阵,L为输入变换矩阵。 对于满足可解耦性条件的多变量系统,通过将它的系数矩阵A,B,C化成为解耦规范形,便可容易地求得所要求的状态反馈矩阵K和输入变换矩阵L。 完全解耦控制方式的主要缺点是,它对系统参数的变动很敏感,系统参数的不准确或者在运行中的某种漂移都会破坏完全解耦。 静态解耦控制 一个多变量系统在单位阶跃函数(见过渡过程) 输入作用下能通过引入控制装置实现稳态解耦时,就称实现了静态解耦控制。 对于线性定常系统(A,B,C),如果系统可用状态反馈来稳定,且系数矩阵A、B、C满足关于秩的关系式,则系统可通过引入状态反馈和输入变换来实现静态解耦。 多变量系统在实现了静态解耦后,其闭环控制系统的传递函数矩阵G(s)当s=0时为非奇异对角矩阵;但当s≠0时,G(s)不是对角矩阵。 对于满足解耦条件的系统,使其实现静态解耦的状态反馈矩阵K和输入变换矩阵L可按如下方式选择:首先,选择K使闭环系统矩阵(A-BK)的特征值均具有负实部。 随后,选取输入变换矩阵 ,式中D为非奇异对角矩阵,其各对角线上元的值可根据其他性能指标来选取。 由这样选取的K和L所构成的控制系统必定是稳定的,并且它的闭环传递函数矩阵G(s)当s=0时即等于D。 在对系统参数变动的敏感方面,静态解耦控制要比完全解耦控制优越,因而更适宜于工程应用。 软件解耦 做事情要想事半功倍,就要高处着眼,触摸到事情的脉络。 当今流行着各种眼花缭乱的软件框架,不管是struts,还是spring,hibernate,还是,还是各种前端UI框架,其设计的核心思想是: 1、尽可能减少代码耦合,如果发现代码耦合,就要采取解耦技术; 2、各种解耦技术的核心是: (a)使用外部的配置文件,将各种框架内部的组件进行文本型的配置; (b)用户通过组件的名字和参数map使用组件,达到脚本性而非代码性的直接使用。 这与设计一个应用服务器的架构完全相同。 只不过spring使用xml类型的配置文件,并且使用Ioc技术,而我使用服务数据库化,用数据库来管理服务。 我不支持类,它们支持类。 java比C++功能强大的地方就在于其强大易用的反射机制,对C来说,开发一套反射机制的难度还是很大的,需要修改编译器。 各种高层软件设计的核心其实就是如何解耦和增强可扩展性,可扩展性的核心是插件技术,而插件技术也与解耦的方案有关。 配置这个术语的诞生,就是解耦技术带来的,因为要解耦,所以需要进行配置。
1991年,芬兰赫而辛基的学生LinusTorvalds为了自己使用与学习的需要,他开发了类似Unix且运行在平台上运行的操作系统,命名为Linux。 为了使每个需要它的人都能够容易的得到它,LinusTorvalds把它变成了自由软件。 感谢Internet的飞速发展使得全世界的程序开发员有了一种全新的有效沟通方法。 还要感谢在数年之前由RichardStallman主持的GNU项目。 Linux在几年后变成了一个完整的操作系统。 它的能量得到了释放,变得非常可靠,并且每天都会有新的改进加入进去。 为了使Linux变得容易使用,Linux也有了许多发布版本,发布版实际上就是一整套完整的程序组合。 现在已经有许多不同的Linux发行版和各自的版本号,为了不产生混淆,我们先解释一些常提到的术语。 当我们提到Linux时,一般是指RealLinux,即内核,是所有UNIX操作系统的“心脏”。 但光有linux并不能成为一个可用的操作系统。 还需要许多软件包,编译器,程序库文件,Xwindow系统等等。 因为组合方式不同,面向用户对象不同,所以这就是为什么有许多不同的Linux发行版的原因。 Linux的特点Linux操作系统在短短的几年之内得到了非常迅猛的发展,这与Linux具有的良好特性是分不开的。 Linux包含了Unix的全部功能和特性。 简单的说,Linux具有以下主要特性:1.开放性开放性是指系统遵循世界标准规范,特别是遵循开放系统互连(OSI)国际标准。 凡遵循国际标准所开发的硬件和软件,都能彼此兼容,可方便地实现互连。 2.多用户多用户是指系统资源可以被不同用户各自拥有使用,即每个用户对自己的资源(例如:文件、设备)有特定的权限,互不影响。 Linux和Unix都具有多用户的特性。 3.多任务多任务是现代计算机的最主要的一个特点。 它是指计算机同时执行多个程序,而且各个程序的运行互相独立。 Linux系统调度每一个进程,平等地访问微处理器。 由于CPU的处理速度非常快,其结果是,启动的应用程序看起来好像在并行运行。 事实上,从处理器执行一个应用程序中的一组指令到Linux调度微处理器再次运行这个程序之间只有很短的时间延迟,用户是感觉不出来的。 4.良好的用户界面Linux向用户提供了两种界面:用户界面和系统调用。 Linux的传统用户界面是基于文本的命令行界面,即shell,它既可以联机使用,又可存在文件上脱机使用。 shell有很强的程序设计能力,用户可方便地用它编制程序,从而为用户扩充系统功能提供了更高级的手段。 可编程Shell是指将多条命令组合在一起,形成一个Shell程序,这个程序可以单独运行,也可以与其他程序同时运行。 系统调用给用户提供编程时使用的界面。 用户可以在编程时直接使用系统提供的系统调用命令。 系统通过这个界面为用户程序提供低级、高效率的服务。 Linux还为用户提供了图形用户界面。 它利用鼠标、菜单、窗口、滚动条等设施,给用户呈现一个直观、易操作、交互性强的友好的图形化界面。 5.设备独立性设备独立性是指操作系统把所有外部设备统一当作成文件来看待,只要安装它们的驱动程序,任何用户都可以象使用文件一样,操纵、使用这些设备,而不必知道它们的具体存在形式。 具有设备独立性的操作系统,通过把每一个外围设备看作一个独立文件来简化增加新设备的工作。 当需要增加新设备时、系统管理员就在内核中增加必要的连接。 这种连接(也称作设备驱动程序)保证每次调用设备提供服务时,内核以相同的方式来处理它们。 当新的及更好的外设被开发并交付给用户时,操作允许在这些设备连接到内核后,就能不受限制地立即访问它们。 设备独立性的关键在于内核的适应能力。 其他操作系统只允许一定数量或一定种类的外部设备连接。 而设备独立性的操作系统能够容纳任意种类及任意数量的设备,因为每一个设备都是通过其与内核的专用连接独立进行访问。 Linux是具有设备独立性的操作系统,它的内核具有高度适应能力,随着更多的程序员加入Linux编程,会有更多硬件设备加入到各种Linux内核和发行版本中。 另外,由于用户可以免费得到Linux的内核源代码,因此,用户可以修改内核源代码,以便适应新增加的外部设备。 6.提供了丰富的网络功能完善的内置网络是Linux的一大特点。 Linux在通信和网络功能方面优于其他操作系统。 其他操作系统不包含如此紧密地和内核结合在一起的连接网络的能力,也没有内置这些联网特性的灵活性。 而Linux为用户提供了完善的、强大的网络功能。 支持Internet是其网络功能之一。 Linux免费提供了大量支持Internet的软件,Internet是在Unix领域中建立并繁荣起来的,在这方面使用Linux是相当方便的,用户能用Linux与世界上的其他人通过Internet网络进行通信。 文件传输是其网络功能之二。 用户能通过一些Linux命令完成内部信息或文件的传输。 远程访问是其网络功能之三。 Linux不仅允许进行文件和程序的传输,它还为系统管理员和技术人员提供了访问其他系统的窗口。 通过这种远程访问的功能,一位技术人员能够有效地为多个系统服务,即使那些系统位于相距很远的地方。 7.可靠的系统安全Linux采取了许多安全技术措施,包括对读、写进行权限控制、带保护的子系统、审计跟踪、核心授权等,这为网络多用户环境中的用户提供了必要的安全保障。
大数据云计算等专业作为当下热门的互联网行业高新领域,被各大互联网企业大量需求,都是非常不错的选择。
哪个更值得学没有明确答案,根据每个人情况不同答案是不同的。 云计算的学习难度比大数据略简单,但学习最好大专以上。 只要你技术到位,未来的就业前景还是非常好的!
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
云计算学习主要内容有:
①网络基础与linux系统的管理;
②优化及高可用技能;
③虚拟化与云平台技术;
④开发运维。
软件开发环境(Software Development Environment,SDE)是指在基本硬件和宿至软件的基础上,为支持系统软件和应用软件的工程化开发和维护而使用的一组软件,简称SDE。 它由软件工具和环境集成机制构成,前者用以支持软件开发的相关过程、活动和任务,后者为工具集成和软件的开发、维护及管理提供统一的支持。 SDE在欧洲又叫集成式项目支援环境(Integrated Project Support Environment,IPSE)。 软件开发环境的主要组成成分是软件工具。 人机界面是软件开发环境与用户之间的一个统一的交互式对话系统,它是软件开发环境的重要质量标志。 存储各种软件工具加工所产生的软件产品或半成品(如源代码、测试数据和各种文档资料等)的软件环境数据库是软件开发环境的核心。 工具间的联系和相互理解都是通过存储在信息库中的共享数据得以实现的。 软件开发环境数据库是面向软件工作者的知识型信息数据库,其数据对象是多元化、带有智能性质的。 软件开发数据库用来支撑各种软件工具,尤其是自动设计工具、编译程序等的主动或被动的工作。 较初级的SDE数据库一般包含通用子程序库、可重组的程序加工信息库、模块描述与接口信息库、软件测试与纠错依据信息库等;较完整的SDE数据库还应包括可行性与需求信息档案、阶段设计详细档案、测试驱动数据库、软件维护档案等。 更进一步的要求是面向软件规划到实现、维护全过程的自动进行,这要求SDE数据库系统是具有智能的,其中比较基本的智能结果是软件编码的自动实现和优化、软件工程项目的多方面不同角度的自我分析与总结。 这种智能结果还应主动地被重新改造、学习,以丰富SDE数据库的知识、信息和软件积累。 这时候,软件开发环境在软件工程人员的恰当的外部控制或帮助下逐步向高度智能与自动化迈进。 软件实现的根据是计算机语言。 时至今日,计算机语言发展为算法语言、数据库语言、智能模拟语言等多种门类,在几十种重要的算法语言中,C&C++语言日益成为广大计算机软件工作人员的亲密伙伴,这不仅因为它功能强大、构造灵活,更在于它提供了高度结构化的语法、简单而统一的软件构造方式,使得以它为主构造的SDE数据库的基础成分——子程序库的设计与建设显得异常的方便。 事实上,以C&C++为背景建立的SDE子程序库能为软件工作者提供比较有效、灵活、方便、友好的自动编码基础,尤其是C++的封装等特性,更适合大项目的开发管理和维护。 软件开发环境可按以下几种角度分类:(1)按软件开发模型及开发方法分类,有支持瀑布模型、演化模型、螺旋模型、喷泉模型以及结构化方法、信息模型方法、面向对象方法等不同模型及方法的软件开发环境。 (2)按功能及结构特点分类,有单体型、协同型、分散型和并发型等多种类型的软件开发环境。 (3)按应用范围分类,有通用型和专用型软件开发环境。 其中专用型软件开发环境与应用领域有关,故又软件开发方法(Software Development Method)是指软件开发过程所遵循的办法和步骤。 软件开发活动的目的是有效地得到一些工作产物,也就是一个运行的系统及其支持文档,并且满足有关的质量要求。 软件开发是一种非常复杂的脑力劳动,所以经常更多讨论的是软件开发方法学,指的是规则、方法和工具的集成,既支持开发,也支持以后的演变过程(交付运行后,系统还会变化,或是为了改错,或是为了功能的增减)。 关于组成软件开发和系统演化的活动有着各种模型(参见软件生存周期,软件开发模型,软件过程),但是典型地都包含了以下的过程或活动:分析、设计、实现、确认(测试验收)、演化(维护)。 有些软件开发方法是专门针对某一开发阶段的,属于局部性的软件开发方法。 特别是软件开发的实践表明,在开发的早期阶段多做努力,在后来的测试和维护阶段就会使费用较大地得以缩减。 因此,针对分析和设计阶段的软件开发方法特别受到重视。 其它阶段的方法,从程序设计发展的初期起就是研究的重点,已经发展得比较成熟(参见程序设计,维护过程)。 除了分阶段的局部性软件开发方法之外,还有覆盖开发全过程的全局性方法,尤为软件开发方法学注意的重点。 对软件开发方法的一般要求:当提出一种软件开发方法时,应该考虑许多因素,包括:①覆盖开发全过程,并且便于在各阶段间的过渡;②便于在开发各阶段中有关人员之间的通信;③支持有效的解决问题的技术;④支持系统设计和开发的各种不同途径;⑤在开发过程中支持软件正确性的校验和验证;⑥便于在系统需求中列入设计、实际和性能的约束;⑦支持设计师和其他技术人员的智力劳动;⑧在系统的整个生存周期都支持它的演化;⑨受自动化工具的支持。 此外,在开发的所有阶段,有关的软件产物都应该是可见和可控的;软件开发方法应该可教学、可转移,还应该是开放的,即可以容纳新的技术、管理方法和新工具,并且与已有的标准相适应可称为应用型软件开发环境。 ⑷按开发阶段分类,有前端开发环境(支持系统规划、分析、设计等阶段的活动)、后端开发环境(支持编程、测试等阶段的活动)、软件维护环境和逆向工程环境等。 此类环境往往可通过对功能较全的环境进行剪裁而得到。 软件开发环境由工具集和集成机制两部分构成,工具集和集成机制间的关系犹如“插件”和“插槽”间的关系。 工具集:软件开发环境中的工具可包括:支持特定过程模型和开发方法的工具,如支持瀑布模型及数据流方法的分析工具、设计工具、编码工具、测试工具、维护工具,支持面向对象方法的OOA工具、OOD工具和OOP工具等;独立于模型和方法的工具,如界面辅助生成工具和文档出版工具;亦可包括管理类工具和针对特定领域的应用类工具。 集成机制:对工具的集成及用户软件的开发、维护及管理提供统一的支持。 按功能可划分为环境信息库、过程控制及消息服务器、环境用户界面三个部分。 环境信息库:是软件开发环境的核心,用以储存与系统开发有关的信息并支持信息的交流与共享。 库中储存两类信息,一类是开发过程中产生的有关被开发系统的信息,如分析文档、设计文档、测试报告等;另一类是环境提供的支持信息,如文档模板、系统配置、过程模型、可复用构件等。 过程控制和消息服务器:是实现过程集成及控制集成的基础。 过程集成是按照具体软件开发过程的要求进行工具的选择与组合,控制集成并行工具之间的通信和协同工作。 环境用户界面:包括环境总界面和由它实行统一控制的各环境部件及工具的界面。 统一的、具有一致视感(Look & Feel)的用户界面是软件开发环境的重要特征,是充分发挥环境的优越性、高效地使用工具并减轻用户的学习负担的保证。 较完善的软件开发环境通常具有如下功能:(1)软件开发的一致性及完整性维护;(2)配置管理及版本控制;(3)数据的多种表示形式及其在不同形式之间自动转换;(4)信息的自动检索及更新;(5)项目控制和管理;(6)对方法学的支持。 --------------------------------------------------------开发平台是软件开发过程所使用运行的平台,可以是多语言平台,包含在开发工具之上.如开发平台,---------------------------------------------------------开发工具是单一语言的开发工具如VB6.0,属于开发工具
标签: 工控上位机一般用什么语言、 上位机工控系统的核心技术及应用领域、本文地址: https://www.vjfw.com/article/b59d7b5ddd159c4d0ec7.html
上一篇:微型工控系统的应用与发展趋势分析微型工控...